
115-214

School	of	
Computer	Science

Principles	of	Software	Construction:
Concurrency,	Part	2

Josh	Bloch Charlie	Garrod

215-214

Administrivia

• Homework	5a	due	now
• You	will	get	early	feedback	tomorrow!
– Thank	your	TAs

• 2nd	midterm	exam	returned	today,	after	class

315-214

Outline

I. “It’s	bigger	on	the	outside”	exam	question
II. Static	Analysis	– (I	should	covered	this	earlier)
III. Wait/Notify – primitives	for	cooperation
IV. The	dangers	of	over-synchronization

415-214

Specification
/**
* Returns an immutable list consisting of n consecutive
* copies of the elements in the specified list. The
* returned list logically contains n * source.size()
* elements (as reported by its size method), but its
* memory consumption does not depend on the value of n.
*
* @param n the number of "virtual copies" of source in result
* @param source the elements to appear repeatedly in result
* @throws IllegalArgumentException if n < 0
* @throws NullPointerException if source is null
*/
public static <T> List<T> nCopiesOfList(int n, List<T> source) { }

515-214

Hint	given:	use	AbstractList
/**
* This class provides a skeletal implementation of the List
* interface to minimize the effort required to implement it.
* To implement an unmodifiable list, you need only to extend this
* class and provide implementations of get(int) and size().
*/
public abstract class AbstractList<E> implements List<E> {

protected AbstractList() { }

/**
* Returns the element at the specified position in this list.
*
* @throws IndexOutOfBoundsException if index is out of range
* (index < 0 || index >= size())
*/
public abstract E get(int index);

/** Returns the number of elements in this list. */
public abstract int size();

}

615-214

The	entire solution

public static <T> List<T> nCopiesOfList(int n, List<T> source) {
if (n < 0)

throw new IllegalArgumentException("n < 0: " + n);

return new AbstractList<T>() {
private final List<T> src = new ArrayList<>(source);
private final int size = n * src.size(); // Optimization

public T get(int index) {
if (index < 0 || index >= size)

throw new IndexOutOfBoundsException();
return src.get(index % src.size());

}

public int size() { return size; }
};

}

715-214

Another	optimization
It’s	nice	to	share!
public static <T> List<T> nCopiesOfList(int n, List<T> source) {

if (n < 0)
throw new IllegalArgumentException("n < 0: " + n);

List<T> src = new ArrayList<>(source); // Moved out of class
int size = n * src.size(); // " " " "
if (size == 0)

return Collections.emptyList();

return new AbstractList<T>() {
// No explicit fields necessary! Remainder unchanged.
...

}
}

815-214

Top	level	class	is	a	bit	wordier
Static	factory	omitted	for	brevity
class MultiCopyList<T> extends AbstractList<T> {

private final List<T> src;
private final int size;
MultiCopyList(int n, List<T> source) {

if (n < 0)
throw new IllegalArgumentException("n < 0: " + n);

src = new ArrayList<>(source);
size = n * src.size();

}

public T get(int index) {
if (index < 0 || index >= size)

throw new IndexOutOfBoundsException();
return src.get(index % src.size());

}
public int size() { return size; }

}

915-214

Common		problems

• Problem	specification
– List	must	be	“bigger	on	the	outside”	(virtual	copies)

• Correctness
– Parameter	validity	checking

• Immutability
– Fields	should	be	final and	private
– Need	defensive	copy	of	source
– No	explicit	mutators
– Class	must	not	be	extendable

1015-214

Outline

I. “It’s	bigger	on	the	outside”	exam	question
II. Static	Analysis	– (I	should	have	covered	earlier)
III. Wait/Notify – primitives	for	cooperation
IV. The	dangers	of	over-synchronization

1115-214

Remember	this	bug?
public class Name {

private final String first, last;
public Name(String first, String last) {

if (first == null || last == null)
throw new NullPointerException();

this.first = first; this.last = last;
}
public boolean equals(Name o) { // Accidental overloading

return first.equals(o.first) && last.equals(o.last);
}
public int hashCode() { // Overriding

return 31 * first.hashCode() + last.hashCode();
}
public static void main(String[] args) {

Set s = new HashSet();
s.add(new Name("Mickey", "Mouse"));
System.out.println(

s.contains(new Name("Mickey", "Mouse")));
}

}

1215-214

Here’s	the	fix

Replace	the	overloaded equalsmethod	with	an	
overriding equalsmethod

@Override public boolean equals(Object o) {
if (!(o instanceof Name))

return false;
Name n = (Name)o;
return n.first.equals(first) && n.last.equals(last);

}

1315-214

Fi
n

d
B

u
g

s

1415-214

Static	analysis

• Analyzing	code	without	executing	it
– Also	known	as	automated	inspection

• Some	tools	looks	for	bug	patterns
• Some	formally	verify	specific	aspects
• Typically	integrated	into	IDE	or	build	process
• Type	checking	by	compiler	is	static	analysis!

1515-214

Static	analysis:	a	formal	treatment

• Static	analysis	is	the	systematic	examination	of	
an	abstraction	of	a	program’s	state	space

• By	abstraction	we	mean
– Don’t	track	everything!
– Consider	only	an	important	attribute

1615-214

Error	exists No error	exists

Error	Reported True	positive
(correct	analysis	result)

False	positive
(annoying noise)

No	Error	Reported False	negative
(false	confidence)

True negative
(correct	analysis	result)

Results	of	static	analysis	can	be	classified	as
• Sound:	

• Every	reported	defect	is	an	actual	defect	
• No	false	positives

• Typically	underestimated
• Complete:

•Reports	all	defects
• No	false	negatives

• Typically	overestimated

1715-214

The	bad	news:	Rice's	theorem

• There	are	limits	to	what	static	analysis	can	do
• Every	static	analysis	is	necessarily	incomplete,	
unsound,	or	undecidable

“Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

1815-214

Defects	reported	by	
Sound	Analysis

All	Defects

Defects	
reported	by
Complete	
Analysis

Unsound	&	
Incomplete	
Analysis

Most	static
analysis	tools

1915-214

Back	to	our	regularly	scheduled	
programming	– concurrency!

2015-214

Key	concepts	from	Tuesday…
• Runnable interface	represents	work	to	be	done
• To	create	a	thread:	new Thread(Runnable)
• To	start	thread:	thread.start();
• To	wait	for	thread	to	finish:	thread.join();
• One	sychronized static	method	runs	at	a	time
• volatile – communication	sans	mutual	exclusion
• Must synchronize access	to	shared	mutable	state
– Else	program	will	suffer	safety	and	liveness failures

2115-214

Pop	quiz	– what’s	wrong	with	this?
It’s	from	last	lecture,	but	I	broke	it
public class StopThread {

private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;
}
private static boolean stopRequested() {

return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
}

2215-214

Answer	– you	must	synchronize	
writes	and	reads!
public class StopThread {

private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;
}
private static synchronized boolean stopRequested() {

return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
}

2315-214

Outline

I. “It’s	bigger	on	the	outside”	exam	question
II. Static	Analysis	– (I	should	covered	this	earlier)
III. Wait/Notify – primitives	for	cooperation
IV. The	dangers	of	over-synchronization

2415-214

The	basic	idea	is	simple…

• State	(fields)	protected	by	lock	(synchronized)
• Sometimes,	thread	can’t	proceed	till	state	is	right
– So	it	waits	with	wait
– Automatically	drops	lock	while	waiting

• Thread	that	makes	state	right	wakes	waiting	
thread(s)	with	notify
–Waking	thread	must	hold	lock	when	it	calls	notify
–Waiting	thread	automatically	gets	lock	when	woken

2515-214

But	the	devil	is	in	the	details
Never invoke	wait	outside	a	loop!
• Loop	tests		condition	before	and	after	waiting
• Test	before	skips	wait	if	condition	already	holds
– Necessary	to	ensure	liveness
–Without	it,	thread	can	wait	forever!

• Testing	after	waiting	ensure	safety
– Condition	may	not	be	true	when	thread	wakens
– If	thread	proceeds	with	action,	it	can	destroy	invariants!

2615-214

All of	your	waits	should	look	like	this
synchronized (obj) {

while (<condition does not hold>) {
obj.wait();

}

... // Perform action appropriate to condition
}

2715-214

Why	can	a	thread	wake	from	a	wait
when	condition	does	not	hold?
• Another	thread	can	slip	in	between	notify&	wake
• Another	thread	can	invoke	notify accidentally	
or	maliciously	when	condition	does	not	hold
– This	is	a	flaw	in	java	locking	design!
– Can	work	around	flaw	by	using	private	lock	object

• Notifier can	be	liberal	in	waking	threads
– Using	notifyAll is	good	practice,	but	causes	this

• Waiting	thread	can	wake	up	without	a	notify(!)
– Known	as	a	spurious	wakeup

2815-214

Example:	read-write	locks	(API)
Also	known	as	shared/exclusive	mode	locks
private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();
try {

// Do stuff that requires write (exclusive) lock
} finally {

lock.unlock();
}

2915-214

Example:	read-write	locks	(Impl.	1/2)

public class RwLock {
// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders = 0;

/** Whether lock is held for write. */
private boolean writeLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writeLocked) {

wait();
}
numReaders++;

}

3015-214

Example:	read-write	locks	(Impl.	2/2)

public synchronized void writeLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {

wait();
}
writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {

numReaders--;
} else if (writeLocked) {

writeLocked = false;
} else {

throw new IllegalStateException("Lock not held");
}
notifyAll(); // Wake any waiters

}
}

3115-214

Caveat:	RwLock is	just	a	toy!

• It	has	poor	fairness	properties
– Readers	can	starve	writers!

• java.util.concurrent provides	an	
industrial	strength	ReadWriteLock

• More	generally,	avoid	wait/notify
– In	the	early	days	it	was	all	you	had
– Nowadays,	higher	level	concurrency	utils are	better

3215-214

Outline

I. “It’s	bigger	on	the	outside”	exam	question
II. Static	Analysis	– (I	should	covered	this	earlier)
III. Wait/Notify – primitives	for	cooperation
IV. The	dangers	of	over-synchronization

3315-214

Broken	Work	Queue	(1)
public class WorkQueue {

private final Queue<Runnable> queue = new ArrayDeque<>();
private boolean stopped = false;
public WorkQueue() {

new Thread(() -> {
while (true) { // Main loop

synchronized (queue) { // Locking on private obj.
try {

while (queue.isEmpty() && !stopped)
queue.wait();

} catch (InterruptedException e) {
return;

}
if (stopped) return; // Causes thread to end
queue.remove().run(); // BROKEN - LOCK HELD!

}
}

}).start();
}

3415-214

Broken	Work	Queue	(2)
Broken Work Queue (2)

public final void enqueue(Runnable workItem) {
synchronized (queue) {

queue.add(workItem);
queue.notify();

}
}
public final void stop() {

synchronized (queue) {
stopped = true;
queue.notify();

}
}

}

3515-214

Perverse	use	that	demonstrates	flaw
public static void main(String[] args) {

WorkQueue wq = new WorkQueue();

// Enqueue task that starts thread that enqueues task...
wq.enqueue(() -> {

Thread t = new Thread(() -> {
wq.enqueue(() -> { System.out.println("Hi Mom!"); });

});
t.start();

// ...and waits for thread to finish
try {

t.join();
} catch (InterruptedException e) {

throw new AssertionError(e);
}

});
}

3615-214

Luckily,	it’s	easy	to	fix	the	deadlock
public WorkQueue() {

new Thread(() -> {
while (true) { // Main loop

Runnable task = null;
synchronized (queue) {

try {
while (queue.isEmpty() && !stopped)

queue.wait();
} catch (InterruptedException e) {

return;
}
if (stopped) return; // Causes thread to terminate
task = queue.remove();

}
task.run(); // Fixed! "Open call" (no lock held)

}
}).start();

}

3715-214

Never	do	callbacks	while	holding	lock

• It	is	over-synchronization
• We	saw	it	deadlock
• And	it	can	do	worse!
– If	the	callback	goes	back	into	the	module	holding	the	
lock,	it	will	not	block,	and	can	damage	invariants!

• So	always	drop	any	locks	before	callbacks
– You	may	have	to	copy	the	callbacks	under	lock

3815-214

Summary

• Validate	input	parameters
• Never	use	wait	outside	of	a	while	loop!
– Think	twice	before	using	it	at	all

• Neither	an	under- nor	an	over-synchronizer	be
– Under-synchronization	causes	safety	(&	liveness)	failures
– Over-synchronization	causes	liveness	(&	safety)	failures

