Principles of Software Construction:
Concurrency, Part 2

Josh Bloch Charlie Garrod

School of
Computer Science

| J
institute for
I S SOFTWARE
RESEARCH

-
Institute for
15-214 | S [Fenpets

Administrivia

 Homework 5a due now

* You will get early feedback tomorrow!
— Thank your TAs

* 2nd midterm exam returned today, after class

-
institute f r
15-214 2 [Hl o

Outline

“It’s bigger on the outside” exam question
|. Static Analysis — (I should covered this earlier)
Il. Wait/Notify — primitives for cooperation

V. The dangers of over-synchronization

-
Institute tor
15-214 I | S [[Renpett

Specification

/**

Returns an immutable list consisting of n consecutive
copies of the elements in the specified list. The
returned list logically contains n * source.size()
elements (as reported by its size method), but its
memory consumption does not depend on the value of n.
@param n the number of "virtual copies" of source in result
@param source the elements to appear repeatedly in result
@throws IllegalArgumentException if n < ©

@throws NullPointerException if source is null

X ¥ X X X X ¥ %X X ¥

*/
public static <T> List<T> nCopiesOfList(int n, List<T> source) { }

-
Institute [r
15-214 a [H o

Hint given: use AbstractList

/**
* This class provides a skeletal implementation of the List
* interface to minimize the effort required to implement it.
* To implement an unmodifiable list, you need only to extend this
* class and provide implementations of get(int) and size().
*/
public abstract class AbstractList<E> implements List<E> {
protected AbstractList() { }

/**
* Returns the element at the specified position in this 1list.
*

* @throws IndexOutOfBoundsException if index is out of range
* (index < @ || index >= size())
*/

public abstract E get(int index);

/** Returns the number of elements in this list. */
public abstract int size();

-
institute f r
15-214 s [FHH s

The entire solution

public static <T> List<T> nCopiesOfList(int n, List<T> source) {
if (n < 9)
throw new IllegalArgumentException("n < ©:

+ n);

return new AbstractList<T>() {
private final List<T> src = new Arraylist<>(source);
private final int size = n * src.size(); // Optimization

public T get(int index) {
if (index < © || index >= size)
throw new IndexOutOfBoundsException();
return src.get(index % src.size());

}

public int size() { return size; }

}s

-
Institute [r
15-214 6 [

Another optimization
It’s nice to share!

public static <T> List<T> nCopiesOfList(int n, List<T> source) {

15-214

if (n < 9)
throw new IllegalArgumentException("n < ©:

+ n);

List<T> src = new ArraylList<>(source); // Moved out of class
int size = n * src.size(); // " R !
if (size == 0)

return Collections.emptyList();

return new AbstractList<T>() {
// No explicit fields necessary! Remainder unchanged.

-
institute for
7 I S r SOF TWARE
RESEARCH

Top level class is a bit wordier
Static factory omitted for brevity

class MultiCopylList<T> extends AbstractList<T> {
private final List<T> src;
private final int size;
MultiCopylList(int n, List<T> source) {
if (n < 9)
throw new IllegalArgumentException("n < O:
src = new ArraylList<>(source);
size = n * src.size();

+n);

}

public T get(int index) {
if (index < © || index >= size)
throw new IndexOutOfBoundsException();
return src.get(index % src.size());

}

public int size() { return size; }

- institute for
15-214 8 o

Common problems

* Problem specification
— List must be “bigger on the outside” (virtual copies)

e Correctness

— Parameter validity checking

* Immutability
— Fields should be final and private
— Need defensive copy of source
— No explicit mutators

— Class must not be extendable
15-214 o[BI s

Outline

“It’s bigger on the outside” exam question
|. Static Analysis — (I should have covered earlier)
Il. Wait/Notify — primitives for cooperation

V. The dangers of over-synchronization

15-214 0 [B e

Remember this bug?

public class Name ({
private final String first, last;
public Name (String first, String last) ({
if (first == null || last == null)
throw new NullPointerException() ;
this.first = first; this.last = last;
}
public boolean equals(Name o) { // Accidental overloading
return first.equals(o.first) && last.equals(o.last);
}
public int hashCode () { // Overriding
return 31 * first.hashCode() + last.hashCode() ;
}
public static void main(String[] args) ({
Set s = new HashSet()

s .add (new Name ("Mickey", "Mouse")) ;
System.out.println (
s.contains (new Name ("Mickey", "Mouse")));

Institute for
15-214 1 [Hl e

Here’s the fix

Replace the overloaded equals method with an
overriding equals method

@Override public boolean equals(Object o) {
if (!(o instanceof Name))
return false;
Name n = (Name)o;
return n.first.equals(first) && n.last.equals(last);

. institute for
15-214 12 A

FindBugs

15-214

AJ] CartesianPoint.java &2 = g ElTaskL 8 = B

<~ - | &2 | Yz)
S public boolean equals(CartesianPoint p) { = T E 8
return (p.x==this.x) && (p.y==this.y); O outlin X = O

} o
B 13 ' W
$iPro X @ Jav [2, Dec 4'Sea @ Co “3Pro [mCov & His #Bug 3*call DAna = ©

~
0 errors, 2 warnings, 0 others
Description Resou
v & FindBugs Problem (Of concern) (1 item)
& CartesianPoint defines equals and uses Object.hashCode() Cartes
v & FindBugs Problem (Scary) (1 item)
& CartesianPoint defines equals(CartesianPoint) method and uses Object.equals(Object) Cartes
%% BugInfo # BB Y =0
CartesianPointjava: 12
=] Navigation

CartesianPoint defines equals(CartesianPoint) method and uses Object.equals(Object)

Bug: CartesianPoint defines equals(CartesianPoint) method and uses
Object.equals(Object)

This class defines a covariant version of the equals() method, but inherits the
normal equals(0bject) method defined in the base java.lang.0bject class. The
class should probably define a boolean equals(0Object) method.

Confidence: Normal, Rank: Scary (8)
Pattern: EQ SELF USE OBJECT
Type: Eq, Category: CORRECTNESS (Correctness)

Static analysis

* Analyzing code without executing it

— Also known as automated inspection
* Some tools looks for bug patterns
 Some formally verify specific aspects
e Typically integrated into IDE or build process
* Type checking by compiler is static analysis!

= H”'milrf [
15-214 14 [FH o

Static analysis: a formal treatment

e Static analysis is the systematic examination of
an abstraction of a program’s state space

* By abstraction we mean

— Don’t track everything!
— Consider only an important attribute

= H”'milrf [
15-214 15 [FHH s

s e

Error Reported False positive
(annoying noise)

No Error Reported False negative
(false confidence)

Results of static analysis can be classified as

* Sound:
* Every reported defect is an actual defect
* No false positives
e Typically underestimated

* Complete:
*Reports all defects
* No false negatives
* Typically overestimated

Py institute for
SOFTWARE
RESEARCH

15-214 16

The bad news: Rice's theorem

* There are limits to what static analysis can do

* Every static analysis is necessarily incomplete,
unsound, or undecidable

“Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

. institute for
15-214 17 [Hl e

Most static
analysis tools

Py institute for
SOFTWARE
RESEARCH

15-214 18

Back to our regularly scheduled
programming — concurrency!

. institute for
15-214 10 [Hiame

Key concepts from Tuesday...

 Runnable interface represents work to be done
* To create a thread: new Thread(Runnable)

* To start thread: thread.start();

* To wait for thread to finish: thread.join();

* One sychronized static method runs at a time
e volatile — communication sans mutual exclusion

* Must synchronize access to shared mutable state

— Else program will suffer safety and liveness failures

15-214 20 [Hi SOrTARE

Pop quiz — what’s wrong with this?
It’s from last lecture, but | broke it

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;

private static boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;
})s

backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

- institute for
15-214 21 A

Answer — you must synchronize
writes and reads!

public class StopThread {
private static boolean stopRequested;

private static synchronized void requestStop() {
stopRequested = true;

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;
1)

backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

= H:"\m[r[[
15-214 22 [Heres

Outline

“It’s bigger on the outside” exam question
|. Static Analysis — (I should covered this earlier)

II. Wait/Notify — primitives for cooperation

V. The dangers of over-synchronization

15-214 s [Hi SOrTARE

The basic idea is simple...

* State (fields) protected by lock (synchronized)

* Sometimes, thread can’t proceed till state is right
— So it waits with wait

— Automatically drops lock while waiting

 Thread that makes state right wakes waiting
thread(s) with notify

— Waking thread must hold lock when it calls notify

— Waiting thread automatically gets lock when woken

= H”'m[wf r
15-214 24 [H o

But the devil is in the details
Never invoke wait outside a loop!

* Loop tests condition before and after waiting

* Test before skips wait if condition already holds
— Necessary to ensure liveness
— Without it, thread can wait forever!

* Testing after waiting ensure safety

— Condition may not be true when thread wakens
— If thread proceeds with action, it can destroy invariants!

= H”'m[wf r
15-214 2s [H o

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {
obj.wait();
}

. // Perform action appropriate to condition

15-214 26 [Hi SOrTARE

Why can a thread wake from a wailt
when condition does not hold?

* Another thread can slip in between notify & wake
* Another thread can invoke notify accidentally
or maliciously when condition does not hold
— This is a flaw in java locking design!
— Can work around flaw by using private lock object
* Notifier can be liberal in waking threads
— Using notifyAll is good practice, but causes this
* Waiting thread can wake up without a notify(!)

— Known as a spurious wakeup
15-214 27 [e

Example: read-write locks (API)
Also known as shared/exclusive mode locks

private final RwLock lock = new RwLock();

lock.readLock();

try {
// Do stuff that requires read (shared) lock

} finally {
lock.unlock();
}

lock.writelLock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
lock.unlock();
}

15-214 2s [

Example: read-write locks (Impl. 1/2)

public class RwLock {

15-214

// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders = 0;

/** Whether lock is held for write. */
private boolean writelLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writelLocked) {
wait();
}

numReaders++;

-
institute for
29 SOFTWARE
RESEARCH

Example: read-write locks (Impl. 2/2)

public synchronized void writelLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {
wait();
}

writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {
numReaders--;
} else if (writelLocked) {
writeLocked = false;
} else {
throw new IllegalStateException("Lock not held");
}

notifyAll(); // Wake any waiters

z Insti H\'[r
15-214 30 sormmse

Caveat: RwLock is just a toy!

* |t has poor fairness properties

— Readers can starve writers!

* java.util.concurrent provides an
industrial strength ReadiWritelLock

* More generally, avoid wait/notify
— In the early days it was all you had
— Nowadays, higher level concurrency utils are better

. institute for
15-214 31 [Hi e

Outline

“It’s bigger on the outside” exam question
|. Static Analysis — (I should covered this earlier)

Il. Wait/Notify — primitives for cooperation

V. The dangers of over-synchronization

15-214 2 [H

Broken Work Queue (1)

public class WorkQueue {
private final Queue<Runnable> queue
private boolean stopped = false;
public WorkQueue() {
new Thread(() -> {

while (true) { // Main loop
synchronized (queue) { // Locking on private obj.

try {
while (queue.isEmpty() && !stopped)

queue.wait();
} catch (InterruptedException e) {
return;
}

if (stopped) return; // Causes thread to end
queue.remove().run(); // BROKEN - LOCK HELD!

new ArrayDeque<>();

}
}
}).start();

z Insti H\'[r
15-214 33 sormmse

Broken Work Queue (2)

Broken Work Queue (2)
public final void enqueue(Runnable workItem) {
synchronized (queue) {
queue.add(workItem);
queue.notify();
}
}
public final void stop() {
synchronized (queue) {
stopped = true;
queue.notify();

= H:"\m[r[r
15-214 O | S [Ea

Perverse use that demonstrates flaw

public static void main(String[] args) {
WorkQueue wg = new WorkQueue();

// Enqueue task that starts thread that enqueues task...
wg.enqueue(() -> {
Thread t = new Thread(() -> {
wq.enqueue(() -> { System.out.println("Hi Mom!"); });
1)

t.start();

// ...and waits for thread to finish

try {
t.join();

} catch (InterruptedException e) {
throw new AssertionError(e);

}

})s

= Insti HA'[/f
15-214 35 sormmse

Luckily, it’s easy to fix the deadlock

public WorkQueue() {
new Thread(() -> {
while (true) { // Main loop
Runnable task = null;
synchronized (queue) {

try {
while (queue.isEmpty() && !stopped)

queue.wait();
} catch (InterruptedException e) {
return;
}

if (stopped) return; // Causes thread to terminate
task = queue.remove();

}
task.run(); // Fixed! "Open call"” (no lock held)

}
}).start();

z Insti H\"[r
15-214 36 sormmse

Never do callbacks while holding lock

* |tis over-synchronization
* We saw it deadlock

e And it can do worse!

— If the callback goes back into the module holding the
lock, it will not block, and can damage invariants!

* So always drop any locks before callbacks
— You may have to copy the callbacks under lock

= H”'m[wf r
15-214 37 [H o

Summary

e Validate input parameters
* Never use wait outside of a while loop!

— Think twice before using it at all
* Neither an under- nor an over-synchronizer be

— Under-synchronization causes safety (& liveness) failures
— Over-synchronization causes liveness (& safety) failures

. institute for
15-214 3z [FH e

